Research indicates that, among other technological innovations, smart greenhouses with vertical farming will be pivotal in driving the ‘Fourth Agricultural Revolution’.

Fischer Farms unveiled the world's largest vertical farm in Norfolk, UK, earlier this month. Credit: Farmer's Guide.

At Klipspringer, we’ve been helping food businesses ensure safety, compliance, and efficiency for over twenty years. As part of our ongoing commitment to insightful, industry-leading content, Klipspringer’s research expert Alex Blair has written this article to notify readers about developments unfolding at the forefront of food production.


On 15 November 2022, the world population reached 8 billion people. Together with climate change, geopolitical tensions, disparities in food security, the pandemic, and ethical dietary considerations, population growth is one of the key factors instigating change throughout international food systems.

Labelled as ‘pressures’ in a UK Government report, these factors create an urgent need to produce more food on less land. How to approach this task most effectively is the subject of heated debate between advocates of traditional or technological methods.

Nonetheless, advancements in machinery and plant breeding will become increasingly utilised in food production, according to a report from Global Data investigating technological trends across several sectors.

Technology or tradition? Debates over sustainable, equitable food production have polarised agricultural experts for years. Credit: Getty Images.

Trend #1 – An Expansion in Drone Usage and Automatisation

Agricultural drones are unmanned vehicles used for yield optimisation and monitoring crop growth. By 2030, it is predicted that they will also be able to carry out crop spraying and terrain monitoring.

As seen below, the demand for agri-drones is rising rapidly. This is partly due to the labour crisis and skills shortage, and partly due to agri-drones capacity to conduct diagnostics impossible for ground checks, such as soil pH level, irrigation, and temperature.

Growth in agri-drone patents. Source: Global Data's Patent Analytics Database.

Challenges facing the future development of agri-drones include poor rural connectivity, regulatory hurdles (particularly minimising chemical drift during crop spraying), and weather dependency. In spite of this, some estimate that 80-90% of drone market growth in the next decade will come from agriculture.

Trend #2 – A Rise in Blockchain Technology Supply Systems

In the past three years, supply chain failures have plagued the food industry.

Rising prices and supply breakdowns of cooking oil were particularly noticeable. Various issues including manufacturing backlogs, a lack of qualified workers, and a shortage of raw materials have severely impacted the international food supply chain. Not to mention wars and global pandemics.

As a digital system for recording trade transactions among multiple parties, blockchain technology allows for a vast and unlimited number of trading partners to access data and supplies privately, anonymously, and securely. Blockchains offer equal access for each partner in the network at all times – enhancing traceability, deterring fraud, and improving responses to contamination and foodborne illnesses.

Blockchain supply system. Credit: Cath Strawson (Klipspringer).

Major food companies such as Nestlé, Dole Food Co., and Unilever have already integrated blockchain technology into their supply systems. An increasing number of organisations are researching the potential benefits of blockchain – particularly since the Food and Drug Administration (FDA) emphasised the need for ‘tech-enabled traceability’ as part of their New Era of Smarter Food Safety Blueprint in 2020.

Trend #3 – A Surge in Smart Greenhouses and Vertical Farming

As a combination of traditional agricultural systems and modernised automation, smart greenhouses allow farmers to construct a self-regulated microclimate, boosting productivity.

Within these greenhouses, vertical farming – a stacked growing system for indoor crops – received over $1 billion in funding in 2021, exceeding its combined funding generated in 2018 and 2019. This included Fischer Farm’s announcement of a £25m vertical farm in Norfolk – unveiled earlier this month. The plant will supply 6.5 tonnes of leafy salad, herbs, and other fresh produce to UK supermarkets each day

Smart greenhouse job advertisements have also increased fivefold in just under two years, as demonstrated below.

Smart greenhouse-related job advertisements. Source: Global Data Job Analytics Database.

Population growth is projected to reach 8.5 billion by 2030, with approximately 5 billion people converging in cities. Therefore, growing nutritionally dense food closer to urban areas is the most significant benefit of this trend.

The enormity of this challenge is likely to outweigh reservations regarding the high upfront costs of smart greenhouses. Even so, alternative solutions will be required for the ‘smart’ cultivation of cereals and fruits, which vertical farming is largely ineffective at.

Investors will also have to weigh up the land-saving benefits against the high electricity consumption of smart greenhouses.

Trend #4 – A Transition from GMOs to CRISPR Techniques for Food Cultivation

Controversy has surrounded Genetically Modified Organisms (GMOs) for over a decade.

Critics point out their threat to small-scale farmers, strengthening of corporate control over global food supply, and damage to biodiversity due to intensive monoculture systems. Public attitudes remain sceptical and strong regulation around safety and labelling is unwavering.

However, research into the biological, nutritional, and socioeconomic implications of CRISPR technology is starting to gain traction.

GMO vs CRISPR food cultivation. Credit: Cath Strawson (Klipspringer).

Put simply, CRISPR is a genetic engineering technique by which the genomes of living organisms are modified through deleting, adding, or altering sections of DNA. Advocates for CRISPR techniques claim that the use of this novel DNA leads to:

  • Improved food safety (by knocking out antibiotic resistance to provide immunity against pathogens like salmonella)
  • Lengthened shelf life of perishable foods
  • Development of new products that taste better and have other desirable traits for consumers

One example of these ‘desirable traits’ is celiac-safe wheat, beneficial for those suffering from celiac disease (an extreme allergy to gluten). Another is improving the crop benefits and taste of decaffeinated coffee.

Despite these potential opportunities, widespread gene editing for food production purposes will be slowed by public misgivings and regulatory hurdles. This trend is forecasted not to develop significantly until the latter part of this decade.

Trend #5 – A Steady Growth in Alternative Proteins

Analysts predict that the alternative meat and dairy markets will continue to expand steadily – but not as much as some have touted

Primarily driven by concerns for animal welfare, health, and the environment, daily meat consumption in the UK has reduced by 17% in the last decade, according to a study published in Lancet Planetary Health.

Meat alternatives are expected to hit double digits in value growth from 2020 to 2025, with a Compound Annual Growth Rate (CAGR) of 12.7%. Meanwhile, the alternative dairy market has a similar projected CAGR (12.5%), but over the space of eight years, from 2022 to 2030.

The below table illustrates the pros, cons, and key markets associated with various types of alternative proteins.

Alternative Protein Type

Pros

Cons

Key Markets

Insect Protein

-High protein levels

-Lower carbon footprint, land and resource use compared to animal proteins

-Widespread aversion to eating insects (especially in Western countries)

-Asia Pacific Region

-Latin America

-Africa

Cultured Meat*

-Lower carbon footprint than animal protein

-Predicted to be cheaper than beef by 2030

-Improved animal welfare

-Still regulatorily prohibited in the USA, UK & EU  

-Worsened taste

-Israel

-Asia Pacific Region

Plant-Based Proteins

-Lower carbon footprint, land and resource use

-Can replace both meat and dairy products

-Currently attracting the most investment of all alternative proteins

-Vitamin B12 deficiency

-No cheaper as an alternative than traditional proteins

-North America

-Europe

-Latin America

-Asia Pacific Region

Microbial Proteins**

-Sidesteps animal cruelty

-Can be carried out using organic waste

-Lower carbon footprint, land and resource use

-Further research needed on allergic reactions and gastrointestinal symptoms

-North America

-Asia Pacific Region

Pros, cons, and key markets of alternative protein types. Sources: Klipspringer and Global Data.

*Cultured meat is produced from animal cells rather than actual meat.

**Microbial proteins are single-celled proteins typically made up of fungi, bacteria, or algae.

Overall, the growth of alternative proteins is significant, but not enough to seriously disrupt the monopoly that traditional proteins have on the food market. By 2026, traditional meat or dairy products are still expected to account for 51% of global food sales, compared with just 1.4% for alternative proteins.

Trend #6 – A Heightened Focus on Livestock Healthtech to Fight Zoonotic Diseases

Meat and dairy industries are entirely dependent on livestock numbers. As any disease or infection that is naturally transmissible from vertebrate animals to humans, zoonotic diseases – or zoonoses – can devastate livestock numbers, and, therefore, food markets.

The spread of African swine fever (ASF) in pigs across Southeast Asia is a prominent example of a market-devastating disease. Following an outbreak in China in August 2018, ASF led to the deaths or culling of millions of pigs dying Southeast Asia. With pork meat accounting for over 35% of global meat consumption, global prices soared.

Key emerging technologies. Source: Cath Strawson (Klipspringer).

As analysed in the previous trend, traditional proteins look set to retain their stranglehold on global markets, at least for the time being. In light of this, food and farming organisations are anticipated to focus on protecting livestock numbers through animal health monitoring and vaccine development.

Trend #7 – An Increase in Use of Digital Twins to Predict and Optimise Farm Operations

A digital twin is a representation of a physical system that can help to understand, predict, and optimise performance. Data is collected from the physical asset, including information that cannot be observed, such as soil health. The digital twin analyses previous patterns to simulate future behaviour, allowing farmers to act quickly if a deviation occurs.

Digital twins are underpinned by remote operation, which is a hotly contested aspect to this so-called ‘new phase of smart farming’. Supporters cite the capacity to conduct planning and control away from the site, and to carry out predictive analysis and real-time response, while critics highlight jobs lost due to automatisation.

Digital twins. Credit: Tomato News.

While automatised developments like digital twins are promising with regard to efficiency, cost-saving, and sustainability, if implemented improperly they could have serious ramifications for rural livelihoods. A most prominent example of this dispute between cause and consequence is the population divergence into urban areas, which is predicted to cause a global decrease in rural populations and farms.

Extreme care must be taken to ensure that trends of this sort are only used in response to our shifting population demographics, intensifying climate, and unequally distributed global food supply, rather than driving these changes in the first place.

Businesses seeking to innovate by implementing the developments and trends outlined above must also commit to genuine corporate responsibility regarding their ethical and environmental consequences. Dedicating time to educate and fully inform your team is essential to this responsibility.


For more insightful content, click below to see a breakdown of the first webinar in our ‘Culture in Hygiene’ series, hosted by Klipspringer alongside two expert panellists.